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Fig. 1: COBALT can be used to collect data across a variety of both simulated and real-world environments, including bimanual tasks.

Abstract— The scarcity of large-scale, high-quality demon-
stration data remains a bottleneck in scaling imitation learning
for robotic manipulation. We present COBALT, a teleoperation
platform designed to democratize robot learning at scale both
in simulation and in the real world. By leveraging vectorized en-
vironments, our scalable, load-balanced infrastructure supports
concurrent teleoperation by multiple users on a single GPU,
yielding a significant reduction in teleoperation cost. Operators
can connect from nearly anywhere on Earth using commonly
available devices, including single- or dual-smartphones, VR
headsets, 3D mice, and keyboards. An in-memory data cache
and efficient video streaming keep control and rendering
synchronous, sustaining dozens of concurrent users at 20 Hz
with sub-100 ms end-to-end latency. We demonstrate concurrent
support for 256 clients across 8 GPUs, underscoring the system’s
ability to scale both horizontally across hardware and within
individual servers. We perform a comprehensive user study
showing that phone-based teleoperation performs comparably
or better than specialized hardware, enabling faster, more
ergonomic data collection. To ensure data quality, COBALT logs
a suite of real-time metrics to automatically filter suboptimal
demonstrations. We further demonstrate that a structured user
training curriculum significantly improves data collection quality.
Guided by insights from our user study, we crowdsource the
collection of a large-scale, high-quality pilot dataset with 7500+
demonstrations (50+ hours) collected with smartphones across
nine countries over five days. We validate the dataset’s quality
by training state-of-the-art imitation learning algorithms. Please
visit cobalt-teleop.github.io to test out COBALT.

I. INTRODUCTION

The long-term vision of robotics increasingly relies on
data-driven methods like imitation learning [1], [2], [3],
[4], [5], [6]. While these techniques efficiently teach robots
skills using human demonstrations, their ability to generalize
remains severely limited by the quantity, quality, and diversity
of available training data. This constitutes a fundamental
bottleneck: compared to the billions of images and trillions
of text tokens fueling foundation models in computer vision

and NLP [7], [8], robotics operates in a data desert, with
even the largest datasets being orders of magnitude smaller
(O(10°) trajectories) [9], [10], [11], [12]. Bridging this vast
data gap is arguably the most critical step toward realizing
robots with broad capabilities for assisting humans across
diverse tasks and environments.

Gathering demonstrations on physical hardware is notori-
ously time-consuming and cost-prohibitive, limiting dataset
size and diversity. Collecting demonstrations in simulation
serves as a complementary method of scaling robotics data.
Modern simulation frameworks, such as MuJoCo [13] and
Isaac Sim [14], accelerate dataset generation by enabling fast
creation of diverse teleoperation environments [15], [16], [17],
[18]. Regardless of the simulated or physical teleoperation
environment, a critical obstacle in bridging the data gap
is how effectively human operators can be brought into
the loop to provide high-quality demonstrations. This is
heavily influenced by factors such as cost, ease of onboarding,
ergonomics, and ease of use.

We present COBALT, a scalable data collection platform
that leverages cloud-based infrastructure to enable teleoper-
ation from geographically distributed users using a variety
of off-the-shelf devices. COBALT is the first to support con-
current, uninterrupted teleoperation across GPU-accelerated
vectorized simulation environments (supporting Isaac Lab
[19], robosuite [20], and LIBERO [21]), significantly improv-
ing the cost and efficiency of data collection. COBALT is
globally deployable and supports remote operators connecting
via single smartphones (Android/iOS), dual smartphones for
bimanual control, VR headsets, 3D mice, and keyboards.
We achieve low-latency (sub-100 ms at 20 Hz) interaction
through optimized networking, caching, and multiprocessing.

Recognizing that scale without quality is insufficient,
COBALT incorporates a suite of real-time performance metrics
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TABLE I: Comparison of Existing Teleoperation Techniques in Literature. S = Smartphone, VR = Virtual Reality, 3DM = 3D mouse,
K = keyboard, J = Joystick. *TeleMoMa data collection infrastructure is not public. **Assumes RTX 3090, real value varies per GPU.

Assumes zero marginal cost of a smartphone.

Method RoboTurk [16] MoMaRT [22] TeleMoMa [15] RoboTurk Real-World [23] GELLO [24] ALOHA [6] COBALT
Device Cost $0-$500 $0-$500 $0-$500 $0-$500 ~$300 ~ $20k $0-$500
Input Devices S, VR, 3DM, K S,J S, VR, 3DM, K S J J S, VR, 3DM, K
Coverage i0S iO0S i0S ioS — — i0S, Android
Bimanual X X 4 X v v v
Simulators MuJoCo MuJoCo MuJoCo MuJoCo — — MuJoCo & Isaac Lab
Training Curriculum X X X X X X v
Sim/Real Sim Sim Sim & Real Real Real Real Sim & Real
Remote v v v v X X v
Publicly Available X X v X 4 4 v
Cloud-Scaling v X X X X X v
Users Per Machine 1 1 1 1 — — 8+**

to automatically filter suboptimal demonstrations and a struc-

tured training curriculum proven to improve user proficiency

and data quality. Our contributions can be summarized as
follows:

1) COBALT: An open-source, cloud-based teleoperation
platform designed for scalability and accessibility, support-
ing 190+ environments. COBALT accommodates several
concurrent users on a single GPU and integrates several
commonly available input devices, including smartphones,
thus lowering the barrier to entry.

2) Data Quality at Scale: We introduce a structured training
curriculum and an extensive suite of performance metrics
that help refine data quality and lay the groundwork for
future systems capable of autonomous user onboarding
and data curation at scale.

3) User Study and Analysis: We perform a comprehensive
user study comparing input devices for teleoperation, pro-
viding insights into device ergonomics and performance,
alongside stress tests quantifying the platform’s scalability.

4) Pilot Dataset: We crowdsource a pilot dataset (7500+
human-collected demos, 50+ hours) using COBALT from
50+ inexperienced teleoperators across nine countries over
five days and evaluate its quality by training imitation
learning policies.

II. RELATED WORK

A. Teleoperation Frameworks

Large-scale data collection requires robust infrastructure
that supports low-latency streaming, offers accessible input
modalities, and enables distributed deployment. RoboTurk
[16] introduced a server-client architecture that shifted sim-
ulation computation to remote servers. This design allowed
participants to control robots through smartphone and VR in-
terfaces with minimal local hardware requirements, improving
scalability and enabling crowdsourcing. Subsequent works
such as TeleMoMa [15] and MoMaRT [22] extended these
contributions to mobile manipulators, enabling more complex
tasks and control strategies. However, these platforms gener-
ally lack comprehensive user testing, quantitative evaluation
of collected trajectories, and a demonstration of the ability
to scale crowdsourced data collection.

COBALT differentiates itself from these works in its ability
to arbitrarily scale geographically distributed data collection
with increasing compute. Earlier efforts collected datasets

from a handful of users and tasks [15], [16], enabling
users to gain strong proficiency and provide near-expert
demonstrations over time. We demonstrate true global crowd-
sourced teleoperation, yielding over 50 hours of successful
demonstrations across 10+ environments, multiple simulators,
and 50+ inexperienced teleoperators. In contrast to prior
platforms [15], [16], [22], COBALT supports concurrent,
uninterrupted teleoperation across vectorized environments on
a single GPU, significantly improving scalability, efficiency,
and cost-effectiveness. To lower the barrier for community
adoption and extension, COBALT will be released as a fully
open-source teleoperation platform supporting accessible, low-
cost devices like smartphones, including both Android and
iOS. With around 80% of the global market share [25], provid-
ing Android support is particularly crucial in enabling global
crowdsourcing. COBALT overcomes significant limitations of
previous systems that were either closed-source [16], [22],
[23], incompletely released [15], or required costly specialized
hardware [6], [24].

B. Input Devices

Scalable teleoperation depends on selecting input devices
that strike a balance between cost, availability, user comfort,
and precision. Specialized options, such as leader-follower
setups [6] or VR headsets [26], [27], can provide highly
accurate and intuitive control, but often require equipment
that is neither widely accessible nor fatigue-free over ex-
tended sessions. Similarly, 3D mice have been refined for
teleoperation using techniques like deadbands and low-pass
filtering [28], but remain limited in their adoption due to
cost and niche usage. By contrast, most modern smartphones
include built-in augmented reality (AR) frameworks capable
of tracking 6-DoF poses with competitive accuracy [29].
This has enabled platforms such as RoboTurk [16] and
MoMaRT [22] to successfully gather large volumes of
manipulation data. Furthermore, independent work on user
interface improvements, such as explicit input assistance
[30] and automated grasp planning [31], further simplify
the data collection process by reducing fatigue and user
error. Overall, the broad availability of smartphones presents
an ideal pathway to crowdsource demonstrations at scale,
especially for tasks requiring full pose control, without
specialized hardware.
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Fig. 3: COBALT System Architecture. a) Cloud provider hosts one group of virtual machines (VM) per task, with dynamic allocation of
servers based on demand. b) A load balancer sits in front of the different groups of servers, functioning as a rate limiter and reverse proxy.
c¢) Data pipeline handles secure data storage, data cleaning scripts, and data augmentation.

III. COBALT: DESIGN AND ARCHITECTURE

COBALT is a scalable, cloud-based data collection platform
that enables users worldwide to remotely teleoperate simulated
and real robots. By leveraging low-latency networking, diverse
input devices, multiple simulation frameworks, and real-
world teleoperation capabilities, COBALT enables large-scale
crowdsourcing and democratizes the creation of high-quality
robotics datasets.

COBALT improves scalability and accessibility, as com-
pared to prior work in RoboTurk [16], through the integration
of robust cloud infrastructure and support for a variety of
input devices. The platform accommodates smartphones (both
Android and iOS), virtual reality (VR) headsets, keyboards,
and 3D mice. For bimanual tasks, COBALT also supports VR
headsets and dual smartphones. By offering an extensible
control interface, COBALT allows developers to integrate
arbitrary input devices. Additionally, the platform incorporates
a structured training curriculum to onboard users effectively,
ensuring the collection of high-quality demonstration data.
A. System Architecture

COBALT’s architecture is designed to be intuitive and
modular. Users connect to a server using their input device,
and the server streams the simulated environment to a web
browser or VR headset. Building such a system to scale,
however, requires nuanced design choices. Namely (a) Users
should be able to connect to and exit the system at any
point in time, essentially as a distributed on-demand service,
(b) The platform must support concurrent users on a single
simulation instance to optimize compute-cost trade-offs with
maximal resource utilization, and (c) The system must support
teleoperation with low latency so that users have a smooth
and comfortable experience.

COBALT meets these requirements with a modular architec-
ture to facilitate ease of development, use, and extensibility.

COBALT consists of three primary components: a Client
Session (CS) Service to communicate with client input
devices, a Teleoperation Service (TS) to run a simulation
backend capable of handling multiple users, and a Media
Service (MS) to stream visual feedback with low latency
(Figure [3).

Centralized Communication via Redis — To handle com-
munication among all three services within the platform, we
utilize Redis, an in-memory database with low-latency read
and write operations that can be deployed in a distributed
fashion across several machines. This database decouples
the main services, allowing them to exchange state infor-
mation such as user commands and rendered video frames
asynchronously and efficiently.

User Connection and Input Handling — Users connect
to the platform via the Client Session Service using a
WebSocket connection from their chosen input device. This
service manages user authentication and session lifecycles
and acts as the primary ingestion point for user control
data. It receives raw pose information from the client
device at 20 Hz and continuously publishes these 6-DoF
pose commands to the Redis store, tagged by user session.
This approach allows users to join and leave seamlessly
on-demand. Redis enables the Client Session Service to
asynchronously communicate this information to downstream
services, maintaining performance and consistency.

Vectorized Simulation Core — The Teleoperation Service
is our system’s computational engine. COBALT leverages
vectorized simulation environments, allowing the service to
manage and step multiple independent simulation instances
concurrently on a single GPU. The service orchestrates the
assignment of available simulation environments to clients
upon new connections. For each active user session, the
service subscribes to the session’s pose commands in the



Redis store, pulls the latest pose update, performs necessary
coordinate transformations, and dispatches the action to the
corresponding simulation environment. Internally, the Teleop-
eration Service applies the standardized 6-DoF commands to
the specific robot model within the chosen simulator backend
(MuJoCo or Isaac Sim). After stepping the simulation, it
renders the visual output for each environment, encodes it
using the H.264 codec, and publishes the encoded frames to
a fixed-size buffer stored in Redis. In parallel, this service
also logs all pertinent demonstration data (states, actions,
timestamps, metrics) for offline use.

Low-Latency Visual Feedback — To provide users with real-
time visual feedback, the Media Service subscribes to the
encoded video frames published to Redis by the Teleoperation
Service. It utilizes WebRTC to establish a direct, low-latency
peer-to-peer streaming connection with the user’s display
client (e.g., a web browser or VR headset). This minimizes
the delay between a user’s action and the visual result, which
is crucial for real-time teleoperation.

Scalable Cloud Deployment — The entire architecture is
designed for robust deployment on cloud platforms. We
containerize and deploy the system across auto-scaling VM
instance groups, segregated by task type and/or geographic
region. A central load balancer distributes incoming user
connections, thus enabling high availability and responsive-
ness. This infrastructure allows our platform to dynamically
scale compute resources based on demand, supporting in
principle an arbitrary number of concurrent users globally
while keeping operational costs low.

B. Training Curriculum

To ensure users are prepared for teleoperating simulated
robots using COBALT, we developed a training curriculum
consisting of calibration and evaluation tasks. This curriculum
is designed to onboard users to ensure they can collect high-
quality demonstration data.

Fig. 4: Subset of Calibration Tasks. Left: Position Task (translational
motion only). Right: Pose Task (translation and rotational motion).
Calibration — Calibration tasks are designed to familiarize
users with basic controls. Position calibration asks users
to place the gripper at randomly spawned targets; rotation
calibration aligns an attached beam to a target circle; and pose
calibration combines both position and orientation targets.

Evaluation — Evaluation tasks build on calibration tasks by
introducing accuracy and precision measurements along with
time constraints. Position (accuracy) tasks require reaching
position targets under time limits; rotation (accuracy) tasks
align the beam to disappearing targets; pose (accuracy) tasks
demand full 6-DoF alignment under time pressure; and beam
(precision) tasks trace line trajectories of decreasing thickness.

Performance metrics from these tasks inform user profi-
ciency and data quality. Analysis can also reveal which aspects
of each input modality are most responsible for errors.

C. Performance Metrics

We developed multiple metrics to quantify the quality
of demonstrations, helping to evaluate the efficacy of input
devices, training curricula, ergonomics, and data utility:

Task Completion Time reflects the amount of time taken to
complete a task successfully. Shorter times generally indicate
higher efficiency.

Network Latency conveys information that helps to un-
derstand the implications of network delays on teleoperation.
It is measured by calculating the time delay from when a
message is sent from the client to when it is received by the
server, synchronized with a server clock.

Trajectory Path Length measures the total translational
and rotational distance traveled during a demonstration. We
define two path length metrics:

a) Total Translational Distance: Let {po,p1,...,Ppr} be
a sequence of end-effector positions in R® measured over
the course of a teleoperated episode. The ftotal translational
distance is the sum of instantaneous translational velocities:

T—1
Dyans = Z”pt-i-l - pt||2~
t=0
A larger value indicates the end-effector traveled a greater
distance overall during teleoperation, suggesting less efficient
motion.

b) Total Rotational Distance: Let {Ro,Rq,...,Rr}
be a sequence of orientation matrices in SO(3). For each
consecutive pair (R, Rt11), define the relative rotation
matrix and the angle of rotation:

t Re)—1
R = RtT Ri11, 6; = arccos (race(1)>'

2

The total rotational distance is the sum of these incremental
angles: Dy, = 3;01 0:. A higher total rotation implies
more rotational movement throughout the task execution.
Motion Jitter captures the smoothness or abruptness of
motion, as defined by local accelerations:
a) Mean Translational Jitter: Define a sequence of

translational positions {p;} and their discrete velocities:

v = [Pi+1 — Pill2
Aty ’
where At; is the time interval between timestamp ¢ and
t + 1. Each demonstration thus yields a speed profile
{vo,v1,...,v7—1}. Over a sliding window of size L, we
compute maximal local translational accelerations and average
them to obtain the mean translational jitter:

1 o
- ma ag |,
N, Z (te[w,w+XL—2] t)

w=1

J, trans —

where a; = (ve11 — vi)/ At is the discrete acceleration, At}
is the time difference relevant for the velocity interval (e.g.,
(Aty+ Ati1)/2), and Ny, is the number of windows. Larger
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Fig. 5: (a) Reset Rate by Device and Curriculum. Across all devices, curriculum training yields a significant decrease in reset rate across
tasks, leading to faster and more efficient data collection. (b) Execution Time by Device and Curriculum. Across all devices, curriculum
training reduces the mean and standard deviation of execution time, leading to shorter and more consistent demonstrations.

values indicate more abrupt changes in translational speed.

b) Mean Rotational Jitter: Similarly, for orientations {R;},
let 6; be the incremental rotation angle between R; and R y.
The rotational velocity (angular speed) is:

0+
Aty
Over a sliding window of size L, we compute maximal local

rotational accelerations (change in angular speed) and average
them:

Wy =

max

Nr
Jrot = € o
ot Ny, t€lw,w+L—2] L)

w=1
where a; = (wi41 — we)/At;. Larger rotational jitter values
indicate more sudden changes in orientation speed.

Communication Loop Jitter measures simulation and
client device stability. We propose two metrics:

a) Server Loop Jitter: During teleoperation, the server
processes incoming teleoperation commands at discrete
timestamps, which we denote {tg,t1,...,¢tr}. The server
loop jitter measures the variability in these intervals:

Jserver = Std ({tt+1 - tt}zﬂ:_()l) :

where Std denotes the standard deviation. Lower jitter
indicates more consistent server-side loop timing.

b) Client Loop Jitter: On the client side (e.g., user device),
we track similarly spaced timestamps {79, 71,...,7r} at
which inputs are sent. The client loop jitter is:

Jetienw = Std ({741 — Tt}tT;()l) .

Higher client loop jitter suggests variable intervals between
sent commands, possibly reflecting inconsistent local process-
ing or network delays affecting the sending rate.

IV. EXPERIMENTS

We conducted a series of experiments to systematically
evaluate COBALT across multiple dimensions, structured
around the following research questions:

RQ1: How does the choice of input device (smartphones,
VR, 3D mice, keyboards) affect teleoperation performance,

user experience, and data quality?

RQ2: Does a structured training curriculum improve user
proficiency and the quality of collected demonstrations?
RQ3: Can COBALT scale to support numerous concurrent
users while maintaining low end-to-end latency and high
simulation control frequency?

RQ4: What is the cost-efficiency of demonstration collection
using COBALT?

RQS: Is the data from COBALT useful for training performant
behavior cloning policies in simulation?

RQ6: Is the data from COBALT useful for training performant
behavior cloning policies in the real world?

A. RQI & RQ2: Input Device Comparison and Curriculum
Effectiveness

To address RQ1 and RQ2, we recruited 12 participants
for an initial user study. Six participants were randomly
assigned to first complete the training curriculum described
in Section [II-B] while the other six served as a control
group (no prior training). Each participant used two randomly
assigned input devices (chosen from smartphone, VR headset,
3D mouse, keyboard) to perform a set of calibration and
manipulation tasks. Participants were instructed to provide
five successful demonstrations (per assigned input device) for
each of the four manipulation tasks: Three-Piece Assembly,
Lift, Mug Cleanup, and Coffee (see [17] for task details). We
collected a set of metrics that include task completion time,
total path length, translational and rotational jitter, and task
reset rates (Section [[II-C). Subjective feedback was collected
using NASA-TLX surveys and Likert scale questionnaires
focusing on ease of use, comfort, and perceived accuracy.
A separate study with six additional participants compared
dual-smartphone versus VR control for bimanual tasks.

(RQ1: Device Comparison) Performance varied signifi-
cantly across devices (Table[[). Smartphones and VR headsets
generally yielded better objective metrics, including shorter
completion times and smoother trajectories (lower jitter) when
compared with keyboards and 3D mice. Although keyboards
and 3D mice yielded shorter absolute path lengths, this is
likely an artifact that stems from from the way that inputs



- ®
7 R
(il 8
y o

Fig. 6: (a) Visualization of Isaac Lab tasks in the pilot dataset. Arrangement of tasks left-to-right, top-to-bottom: Assembly, Lift, Cleanup,
Kitchen, Stack, Pour. (b) COBALT can be used to control physical robots. A real-world recreation of the Mug Pour task is shown.

Metric Smartphone VR Headset 3D Mouse Keyboard TABLE II: Summary of Key Per-
Avg. Completion Time (s) (1) 30.00£16.97 25.60+13.91  31.14+17.12  46.49+32.74 formance Metrics Across Input De-
Avg. Translational Path Length (}) 2.47+1.57 2.30+1.29 1.95+1.02 2.00+1.09 vices in User Study (Mean + Std.
Avg. Rotational Path Length () 4.23+2.74 4.18+2.91 1.63+1.17 2.03+1.48 Dev.). We.observe that thff use of
Avg. Translational Jitter () 0.2420.09 0.43+0.18 0.35£018  0.65+0.26 COBALT with a smartphone improves
Avg. Rotational Jitter () 0.37+0.14 0814039 0444021  0.64+0.21 performance as measured by both
Reset Rate (%) () 2857 42.03 34.43 38.14 quantitative and quahtatlve”metrlcs.
Willing to Use Again (1-5) () 433+052  417+117  3.83+133  3.17+147 Note that path length and jitter are
Subjective Comfort (1-5) (1) 4.50+0.55 4.33+1.03 3.67+£1.21  3.33£1.03 unitless.

TABLE III: Pose Evaluation Task Average Positional and
Rotational Error Across Input Devices. Smartphones yielded
significantly lower errors than the other input modalities.

Device Position Error Rotation Error
Phone 0.13+0.06 0.29+0.17
VR Headset 0.2040.20 0.5140.39
3D Mouse 0.2540.13 1.36+0.53
Keyboard 0.16+0.06 0.87+0.28

are received. VR controllers and phones transmit continuous
pose updates, where even small movements accumulate into
longer trajectories. In contrast, 3D mice support direct velocity
control, and keyboards restrict control to discrete steps.
Nonetheless, the pose evaluation task (Table showed that
smartphones achieved the lowest position and rotation errors,
demonstrating their effectiveness for capturing high-quality,
precise demonstrations. Subjective feedback corroborates
these results, with users rating smartphones and VR higher
on willingness to use again and subjective comfort. Note that
these tasks were conducted in MuJoCo-based environments,
so the translational and rotational metrics in Table [l and
Table [[T]) are unitless and should be interpreted only in relative
terms.

For bimanual tasks, dual-smartphone control was identified
as a low-cost alternative to VR demonstrations. Models
were trained on a small dataset (60 demonstrations) of dual-
smartphone and VR data. With BC-RNN and BC-Transformer,
we obtained success rates of 22% and 26%, respectively.
Success rates were calculated based on 100 rollouts. These
results validate the use of COBALT for bimanual dataset
creation.

(RQ2: Curriculum Effectiveness) The training curriculum
had a demonstrably positive impact. Participants who un-
derwent training exhibited significantly lower reset rates

(Figure [Bh) and reduced mean execution times across all
devices (Figure Pb). This suggests the curriculum effectively
onboarded users, improving data collection speed and quality
by reducing errors and increasing device familiarity.

To assess statistical significance, we compared groups with
and without the training curriculum using independent tests.
For completion time, a one-sided t-test tested whether par-
ticipants who received the curriculum executed downstream
tasks in a shorter amount of time. The result yielded a test
statistic of —4.26 and a p-value less than 0.0001, indicating
statistical significance. For reset rate, we conducted a two-
sample proportion test to determine whether the training
curriculum reduced the frequency of resets. This test produced
a statistic of —4.88 and a p-value of 1 x 1075, also significant.
Together, these results demonstrate that a structured training
curriculum substantially improves both the efficiency and
reliability of trajectories collected by novice teleoperators.

B. RQ3 & RQ4: Scalability, Latency, and Cost Efficiency

Guided by the findings that smartphones and VR offer
superior performance and user experience, we proceeded to
evaluate the scalability of COBALT for large-scale, crowd-
sourced, data collection.

We deployed COBALT on Google Cloud Platform (GCP)
following the architecture in Figure [3| We varied the number
of concurrent teleoperators connecting to a single GPU
instance running vectorized Isaac Lab environments from
one user up to eight to observe scaling effects. We measured:

a) Average latency: Time from user input action to client
session service receiving the action.

b) Simulation control loop time: The time taken by the
simulation environment to process user commands and update
its state.

¢) Resource utilization: RAM and VRAM usage.

d) Cost per 1,000 demonstrations: Estimated cost for 1,000



TABLE IV: System Scaling. System

# Users Avg. Latency (ms) Med. Sim Step (ms) Peak VRAM (GB) Peak RAM (GB)
Performance vs. Number of Concur-
1 1.70 £4.95 45.68 + 0.09 3.40 +0.00 5.17 +0.00 rent Users per GPU (NVIDIA T4). As
2 6.16 +4.97 51.08 £+ 0.02 3.41 £0.00 5.37 + 0.00 the number of concurrent clients on
4 4.79+4.82 60.06 + 0.08 3.55 £ 0.00 5.70 £ 0.06 a single GPU increases, latency and
8 7.08 +4.93 79.31 +0.04 3.88 +0.00 6.66 & 0.02 memory utilization grow sublinearly.

TABLE V: COBALT Pilot Dataset Statistics

Task Demonstrations Hours
Lift 1,294 1.99
Pour 1,026 4.92
Stack 1,112 5.77
Cleanup 1,023 6.86
Assembly 1,007 7.14
Kitchen 1,284 17.16
User Study 764 6.77
Total 7,510 50.61

demonstrations based on cloud pricing.

(RQ3: Scalability & Performance) Our architecture demon-
strated effective scaling, sustaining multiple concurrent users
while maintaining interactive performance. Although teleoper-
ation remained feasible when scaled to eight concurrent users,
we elected to limit active sessions on one GPU to four to
ensure the best user experience (Table [[V). Memory utilization
increased minimally when scaling users, demonstrating that
CPU-bound processes such as WebSocket communication
and WebRTC streaming impose minimal overhead on overall
system performance. Additionally, we conducted system load
testing by simulating 256 concurrent clients distributed over
8 GPUs. COBALT sustained this workload in a distributed
fashion with a median simulation-step latency of 186.7 ms.
Importantly, our results show that this latency does not scale
linearly with client count, indicating that more powerful GPUs
may deliver superlinear scaling improvements.

(RQ4: Cost Efficiency) Cloud deployment offers flexibility
and scalability, but without effective system resource utiliza-
tion, scaling can be expensive. By serving multiple clients
on a single GPU, COBALT substantially cuts these costs. On
an NVIDIA T4 instance, priced at $0.92 per hour (estimated
GCP cost), assuming each user completes 120 demonstrations
in that hour, the cost for 1,000 demonstrations in a non-
vectorized setting would be $7.67. With COBALT, this cost
drops to just $1.92. This equates to a near 4x reduction in
data collection expenses on entry-level hardware. Deploying
instead on a high-end GPU such as the NVIDIA RTX 6000
could support an estimated 12 concurrent teleoperators. In
this way, COBALT can flexibly adjust concurrency to achieve
an optimal cost—performance balance.

C. RQS5: Data Validation via Behavior Cloning

Finally, to demonstrate the practical utility of crowdsourced
data, we collected a large pilot dataset using the COBALT
platform, leveraging insights from our initial studies. We
then used our pilot dataset to train several imitation learning
policies.

We crowdsourced the collection of 6,746 human demonstra-

TABLE VI: BC Results Per Task. Data collected with COBALT
is capable of achieving a variety of tasks using SOTA algorithms.

Task BC-RNN BC-TF ACT DP
Lift 1.00 0.84 0.88 1.00
Pour 0.68 0.36 036 0.54
Stack 0.00 0.00 0.60 0.58
Cleanup 0.72 0.20 092 0.94
Assembly 0.36 0.10 032 0.50
Kitchen 0.04 0.02 0.10 0.12

tions using only smartphones across several benchmark tasks
in Isaac Lab (Table [V] Figure [6h). These tasks included four
Isaac Lab environments created from scratch and two modified
stock environments. Data quality was maintained by filtering
based on performance metrics (Section [[II-C)), selecting
demonstrations within the 50th percentile for total path
length to remove suboptimal trajectories. We trained standard
behavior cloning algorithms (BC-RNN, BC-Transformer [32])
and state-of-the-art methods like Action Chunking with
Transformers (ACT) [6] and Diffusion Policy (DP) [1] on
this curated dataset. Policy performance was evaluated based
on task success rates over 50 rollouts per task.

The policies trained on the COBALT-collected data achieved
high success rates on the majority of tasks from our task
suite (Table [VI), confirming the effectiveness of metric-based
filtering and overall quality of crowdsourced demonstrations.
Note that BC-RNN and BC-TF were trained on additional
low-dimensional observations, specifically task-relevant object
poses. To improve these results, it may be beneficial to explore
capturing additional data or observations (such as another
camera view). Nonetheless, these results confirm that COBALT
can produce datasets effective for training robot manipulation
policies, and that data collected via accessible devices like
smartphones captures sufficient fidelity and diversity.

D. RQ6: Real-Robot Compatibility

In addition to our simulation environments, we validated
our smartphone teleoperation pipeline on a physical Franka
Panda arm using the Polymetis control library (Figure[6p). We
configured our system to connect the mobile app directly to
a Polymetis server running on the robot’s host machine over
our local network, enabling low-latency, real-time control.
We validated the setup by collecting 98 expert demonstrations
on the standard Lift task and then training a BC-RNN
policy on this data, achieving a 52% success rate over 25
rollouts. Although lower than the simulation results, this
confirms the ability to use COBALT with real hardware.
We expect performance to improve with more real-world
data collection on COBALT, which we leave to future work.
Nonetheless, these results confirm that our phone-based
interface generalizes effectively from simulation to real-world



hardware with minimal setup.
V. CONCLUSION

By lowering the barrier to entry for remote teleoperation,
COBALT aims to foster large-scale dataset creation for
imitation learning. Our experimental findings suggest that
integrating accessible devices, user-friendly interfaces, and
robust networking infrastructure can significantly improve the
quality and efficiency of data collection. We also establish
core metrics to rank operators, assess server performance,
evaluate a device’s effectiveness in producing demonstrations,
and identify the most reliable and high-quality demos. While
platforms like COBALT address the critical bottleneck of
operator availability and data volume, they highlight the
emergence of a new potential bottleneck: the creation of
diverse, high-quality simulation environments. As collecting
operator-hours becomes easier, the focus shifts to designing
and implementing a broad range of realistic, robust, and varied
tasks for operators to complete. Generating high-fidelity assets,
defining task structures, and enabling procedural variation
for true diversity all require substantial development effort.
Without a parallel effort in scaling environment creation, even
massive datasets collected via teleoperation might lack the
diversity needed to train generalizable policies capable of
handling novelty in the real world. This suggests that future
progress in scaling robot learning will depend on both efficient
data collection infrastructure and environment generation.
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