Subset Sum (without Repetition) |
An algorithm that solves the subset sum problem, which involves finding out whether a given set of numbers (without repetition) can add up to a given target value. The program uses a technique called dynamic programming to solve the problem efficiently. It initializes a 2D array to keep track of the subproblems that have already been solved and then recursively checks whether a subset of the numbers can sum up to the target value by either including or excluding each number in the subset.
Time Complexity: O(NS), where N is the target and S is the number of values in the set
int **mem; // without repetition bool subset_sum(vector<int> values, int sum, int i) { if (sum < 0 || i < 0) { return false; } else if (sum == 0) { return true; } if (mem[i][sum] == -1) { bool answer = subset_sum(values, sum - values.at(i), i - 1) || subset_sum(values, sum, i - 1); mem[i][sum] = answer; return answer; } else { return mem[i][sum]; } } int main() { vector<int> values = {2, 5, 1, 4}; int target = 8; mem = new int *[values.size() + 1]; for (int i = 0; i < values.size() + 1; i++) { mem[i] = new int[target + 1]; for (int j = 0; j < target + 1; j++) { mem[i][j] = -1; } } cout << subset_sum(values, target, values.size() - 1) << endl; }