Introduction to Machine Learning

Introduction

Machine Leaning is a branch of artificial intelligence that focuses on developing algorithms and models which enable computers to learn from and make predictions or decisions based on data.

Key Steps in Creating a Machine Learning Model: General Equations to know:
Symbol Description Equation
SSE Sum of Squared Errors \(\sum_{i=1}^{n} \left(y_i - y'_i\right)^2 \)
SSR Sum of Squared Regression \( \sum_{i=1}^{n} (y'_i - \bar{y'}_i)^2 \)
SST Sum of Squared Total \( \sum_{i=1}^{n} (y_i - \bar{y})^2 \)
MSE Mean Square Error \( \frac{1}{n}\sum_{i=1}^{n} \left(y_i - y'_i\right)^2 \)
\( \sigma_x^2 \) Variance of X \( \frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x_i})^2 \)
\( \sigma_y^2 \) Variance of Y \( \frac{1}{n}\sum_{i=1}^{n}y_i - \bar{y_i})^2 \)
\( \sigma_{xy} \) Co-Variance of X & Y \( \frac{1}{n}\sum_{i=1}^{n}(y_i - \bar{y_i})(x_i - \bar{x_i}) \)
r Correlation \(\frac{\sigma_{xy}}{\sigma_{x}\sigma_{y}} \)
\(R^2\) R-Squared \(\frac{SST}{SSR} = 1 - \frac{SSE}{SSR} = 1 - \frac{MSE}{\sigma_y^2} \)